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How to fuse uncertain information in multiple attribute decision making (MADM) efficiently is
still an open issue. The power average operation is an effective tool to aggregate interval data.
However, existing methods to aggregate interval numbers based on power average operator are
relatively complicated. In this paper, a simple and effective support function of interval data is
proposed. Then, a novel interval number power average operation operator is presented. Finally, a
practical MADM problem is used to show the efficiency of the developed method. C© 2016 Wiley
Periodicals, Inc.

1. INTRODUCTION

Data fusion process is inevitable in some real applications. How to aggre-
gate the given data efficiently and obtain the final decision properly has been dis-
cussed heatedly.1 Many math models such as ordered weighted averaging (OWA)
operator,2–5 power average operator,6 and fuzzy sets7 have been proposed and ap-
plied to risk assessment,8–11 decision making,12–17 uncertain measurement,18,19 and
optimization.20,21

It is difficult to give merely clear numbers under the influence of complexity
of the object things, limitation of our cognition, and fuzziness of human minds. As
a result, interval number is usually used to give possible range of the value. It is
an effective tool to show the uncertain information in multiple attribute decision
making (MADM). Thus, it is used in MADM problems frequently.22–25

Yager6 introduced the power average operator with the consideration of the re-
lationship between the values to be aggregated. It has some preeminent benefits by
a function that indicates the degree values support each other, which makes the op-
erator widely used in many application systems.26–30 In the aggregation process, the
support of other argument values functions as a sort of weight. Many suggested forms
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for the support function were given to handle different occasions. Many new types
of operators to deal with uncertain values based on the power average operator have
been proposed such as intuitionistic fuzzy power aggregation (IFPWA) operator,31

power generalized interval-valued intuitionistic fuzzy ordered weighted averaging
operator and geometric operator32 and a series of interval-valued Atanassovs IFPWA
operators applied to interval-valued Atanassovs intuitionistic fuzzy environments.33

However, existing methods to aggregate interval numbers based on power
average operator are too complicated to some degree, which may limit the wide use
of this operator. To make it more convenient to be applied to practical problems,
in this paper, the new interval numbers power average operator is proposed to deal
with MADM problems presented by interval numbers.

The rest of the paper is arranged as follows. Section 2 briefly introduces the
basic theories such as the power average operator and the related definitions of
interval numbers. The new interval numbers power average operator in MADM
is presented in Section 3. A practical MADM problem is discussed in Section 4.
Finally, this paper is concluded in Section 5.

2. PRELIMINARIES

In this section, some basic concepts and definitions related to interval numbers
including definitions and operational laws of interval numbers, the distance between
two interval numbers, and the power average operator are introduced, which will be
utilized in the latter analysis of the new interval number power average operator.

2.1. Interval Numbers

DEFINITION 2.1.. Let A(a1, a2) = {x|a1 ≤ x ≤ a2}, then we call A(a1, a2) an interval
number. Specifically, when a1 = a2, A(a1, a2) is degenerated to a real number.34

Let [R] be the set of interval numbers, A(a1, a2) and B(b1, b2) are two interval
numbers in [R], where a1 ≤ a2, b1 ≤ b2, then the operations are as follows:

� A + B = (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2);
� A − B = (a1, a2) − (b1, b2) = (a1 − b1, a2 − b2);
� λA = λ(a1, a2) = (λa1, λa2);
� A = B only if a1 = b1, a2 = b2.

DEFINITION 2.2.. Let A(a1, a2) and B(b1, b2) (a1 ≤ a2, b1 ≤ b2) are two interval
numbers in [R] and let la = a2 − a1, lb = b2 − b1, then the degree of possibility of
A ≥ B is defined as:35,36

p(A ≥ B) = max

{
1 − max

(
b2 − a1

la + lb
, 0

)
, 0

}
(1)

Similarly, the degree of possibility of B ≥ A is defined as:

p(B ≥ A) = max

{
1 − max

(
a2 − b1

la + lb
, 0

)
, 0

}
(2)

International Journal of Intelligent Systems DOI 10.1002/int



NEW INTERVAL NUMBERS POWER AVERAGE OPERATOR IN MADM 633

Then, we have:

� 0 ≤ p(A ≥ B) ≤ 1;
� p(A ≥ B) + p(A ≤ B) = 1;
� p(A ≥ B) = 0.5 only if a1 + a2 = b1 + b2;
� p(A ≥ B) = 1 only if a1 ≥ b2 and p(A ≥ B) = 0 only if a2 ≤ b1;
� Let A, B and C be in [R], if p(A ≥ B) ≥ 0.5, p(B ≥ C) ≥ 0.5, then p(A ≥ C) ≥ 0.5.

To describe explicitly, we let pij = p (Ai ≥ Aj ), a complementary matrix is
constructed as follows:

P =

⎡
⎢⎢⎣

p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

. . .
...

pn1 pn2 . . . pnn

⎤
⎥⎥⎦ (3)

It can be easily seen that pij ≥ 0, pij + pji = 1, pii = 0.5 (i, j ∈ N and 1 ≤ i,
j ≤ n).

Then, pi is defined as the sum of all elements in line i:

pi =
n∑

j=1

pij (4)

At last, the interval numbers are ranked according to the values of pi, i ∈ N in
descending order.

2.2. Distance Measure for Interval Numbers

Interval numbers are usually applied to express uncertain evaluation of esti-
mate. Considering every point of both intervals, Tran and Duckstein37 presented an
efficient distance measure to construct the distance between two interval numbers.

DEFINITION 2.3. Let A(a1, a2) and B(b1, b2) (a1 ≤ a2, b1 ≤ b2) are two interval num-
bers in [R], the distance between A and B is defined as follows:37

D2(A, B) =
∫ 1/2

−1/2

∫ 1/2

−1/2

{[(
a1 + a2

2

)
+ x(a2 − a1)

]

−
[(

b1 + b2

2

)
+ y(b2 − b1)

]}2

dxdy (5)

=
[(

a1 + a2

2

)
−

(
b1 + b2

2

)]2

+ 1

3

[(
a2 − a1

2

)2

+
(

b2 − b1

2

)2
]

(6)
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It can be easily proved that the distance has these properties:

� Nonnegativity: d(A,B) ≥ 0;
� Symmetry: d(A, B) = d(B,A);
� Homogeneity: d(kA, kB) = |k| d(A, B);
� Translation invariance: d(A + C, B + C) = d(A, B);
� Triangle inequality: d(A, B) ≤ (A, C) + d(B, C).

2.3. Power Average Operator

Yager6 introduced the concept of the power average operation as an aggregation
operation, via which a single value can be obtained from a collection of values.

DEFINITION 2.4. Let (a1, a2, . . . , an) be a collection of data; to provide more ver-
satility in the data aggregating process, the power average operator is defined as
follows:6

P − A(a1, a2, ..., an) =

n∑
i=1

(1 + T (ai))ai

n∑
i=1

1(1 + T (ai))
(7)

where

T (ai) =
n∑

j=1
j�=i

Sup(ai, aj ) (8)

Sup(Ai, Aj ) is denoted as the support for Ai from Aj , thus T (Ai) is the total
support for Ai from all the values except for itself.

When the support function is defined, the following properties should be satis-
fied:

� Sup(a, b) = Sup(b, a);
� Sup(a, b) ∈ [0, 1];
� Sup(a, b) ≥ Sup(x, y) if |a − b| < |x − y| .

Thus, the closer two values are, the more they support each other.
For convenience, we can denote a vote function:

Vi = 1 + T (ai) (9)

The weight of ai can be obtained as follows:

ωi = Vi

/ n∑
i=1

Vi (10)
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The power average operator can be denoted as follows:

P − A =
n∑

i=1

ωi ∗ ai (11)

It is a nonlinear weighted average of the ai that makes it possible to take the
relationship between the values into consideration and the order of them has no
influence on the final result for the commutativity of the formula. In addition, if the
support function is identically equal to 0, the power average operator degenerates to
the simple average.

The power average operator has many advantages as follows:

� Boundedness: min{ai} ≤ P − A(a1, a2, . . . , an) ≤ max{ai};
� Idempotency: P − A(a1, a2, . . . , an) = a if ai = a for all i;
� Commutativity: Any permutation of the arguments has the same power average;
� Nonmonotonous: An increase in one of the arguments can result in a decrease in the

power average.

3. A NEW INTERVAL NUMBERS POWER AVERAGE
OPERATOR IN MADM

In this section, we propose a new interval numbers power average operator and
show its application in MADM.

3.1. Proposed Interval Numbers Power Average Operator

DEFINITION 3.1. Let {A1, A2, ..., An} be a collection of interval numbers. To provide a
single interval number with {A1, A2, ..., An}, the proposed interval numbers power
average operator is defined as follows:

P − A =

n∑
i=1

(1 + T (Ai))Ai

n∑
i=1

1(1 + T (Ai))
(12)

where

T (Ai) =
n∑

j=1
j�=i

Sup(Ãi, Ãj ) (13)

Here, {Ã1, Ã2, ..., Ãn} are parts of the unit interval [0, 1]. We normalize
{A1, A2, ..., An} by mapping from them to the unit interval to keep the value of
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the support function Sup(Ãi, Ãj ), which reflects the support degree of the two
interval numbers Ai, Aj between 0 and 1.

Similarly, when the support function is defined, the following properties should
be satisfied:

� Sup(Ãi , Ãj ) = Sup(Ãj , Ãi);
� Sup(Ãi , Ãj ) ∈ [0, 1];
� Sup(Ãi1, Ãj1) ≥ Sup(Ãi2, Ãj2) if the distance between Ãi1 and Ãj1 is bigger than that

between Ãi2 and Ãj2.

Although Ãi, Ãj are interval numbers, the Sup(Ãi, Ãj ) should also gather to a
clear number as a denotation of the degree that Ãi supports Ãj . It can be easily seen
that the preeminent properties in power average operator are reserved completely
and it has the advantage to handle issues when the data are a compound of clear
numbers and interval numbers, or even just a collection of interval numbers.

Similar to Yager’s power average operator,6 the proposed interval numbers
power average operator has some basic properties as follows:

1. Boundedness: min(Ai) ≤ P − A(A1, A2, . . . , An) ≤ max(Ai);
2. Idempotency: P − A(A1, A2, . . . , An) = A when Ai ≡ A;
3. Commutativity: aggregating to the same result regarding of the sorting of Ãi ;
4. Nonmonotonous: Different from the usual average, even if all Ãi ≥ B̃i , the com-

parison between two power averages of them may be P − A(A1, A2, · · · , An) ≤
P − A(B1, B2, · · · , Bn). This is a manifestation of discount outliers: when an interval
number is too far from others, it will be discounted by the decreasing weight.

We can also define the vote function as follows:

Vi = 1 + T (Ai) (14)

The weight of Ai can be obtained as follows:

ωi = Vi

/ n∑
i=1

Vi (15)

Then, the interval numbers power average operator is as follows:

P − A =
n∑

i=1

ωi ∗ Ai (16)

In addition, if Sup(Ãi, Ãj ) = k for all Ãi and Ãj , then T (Ai) = k(n − 1) for
all i and we have

P − A(A1, A2, · · · , An) = 1

n

n∑
i=1

An (17)

which means that the proposed interval numbers power average is simply the average
of all Ai with the same support element.
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3.2. The Math Model in Multiple Attribute Group Decision Making

It is difficult to give merely clear numbers when dealing with the MADM. In
this section, how to use the method properly in MADM with interval numbers is
discussed. The crucial point is to define the support function rationally.

Step 1. Assume that a committee of l experts (e1, e2, . . . , ek, . . . , el). In general,
a MADM problem can be concisely expressed in l matrixes. The assessment matrix
of expert ek is as follows:38

ek =

x1 x2 · · · xn

G1

G2
...

Gm

⎡
⎢⎢⎣

A11 A21 · · · An1

A12 A22 · · · An2
...

...
. . .

...
A1m A2m · · · Anm

⎤
⎥⎥⎦ (18)

where x1, x2, . . . , xn are possible alternatives, G1, G2, . . . , Gm are attributes with
which performance of alternatives are measured and Aij is the rating of alternative
xi in regard to attribute Gj . In this paper, the rating Aij of alternative xi is in the form
of interval numbers and both weights of attributes and experts are clear numbers.

Step 2. We map from {A11, A12, ..., Anm} to the unit interval [0, 1] to get
{Ã11, Ã12, ..., Ãnm}, which are needed in the support function. For alternative xi

(i = 1, 2, . . . , n), the dj1j2 is denoted as the distance between Aij1 and Aij2 . Then, a
distance measure matrix Di is constructed:

Di =

⎡
⎢⎢⎣

0 d12 · · · d1m

d21 0 · · · d2m

...
...

. . .
...

dm1 dm2 · · · 0

⎤
⎥⎥⎦ (19)

Step 3. Here, the following equation is used to calculate to what degree the
interval numbers support each other:

Sup(Ãij1, Ãij2 ) = 1 − d(Ãij1, Ãij2 ) (20)

Some properties are as follows:

� 0 ≤ Sup(Ãij1 , Ãij2 ) ≤ 1 and 0 ≤ d(Ãij1 , Ãij2 ) ≤ 1
� d(Ãij1 , Ãij2 ) = 0 and Sup(Ãij1 , Ãij2 ) = 1 only if Ãij1 = Ãij2 ;
� the larger the difference between Ãij1 and Ãij2 , the closer Sup(Ãij1 , Ãij2 ) is to 0.

The support function is utilized in {Ãi1, Ãi2, ..., Ãin} for each i column in
Equation 18.

After all the degree of support between interval numbers are obtained, we
denote Sj1j2 is denoted as the support degree between Aij1 and Aij2 . A support
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measure matrix (SMM) can be constructed for each i column, which shows the
agreement between the interval numbers assessment for the alternative xi (i =
1, 2, . . . , n):

SMMi =

⎡
⎢⎢⎣

1 S12 · · · S1m

S21 1 · · · S2m

...
...

. . .
...

Sm1 Sm2 · · · 1

⎤
⎥⎥⎦ (21)

It can be seen that the elements in the principal diagonal are 1.

Step 4. Equation 13 is used to obtain T (Aij ), then add all the elements of each
row j (1 ≤ j ≤ m) and the vote function Vij for Aij is obtained as follows:

Vij = 1 + T (Aij ) (22)

Then, the weight of Aij can be obtained by Equation 15:

ωij = Vij

/ n∑
j=1

Vij (23)

The evaluation of expert k for alternative i can be calculated by Equation 16.

P − Aki =
m∑

j=1

ωij ∗ Aij (24)

Step 5. The evaluations for alternative xi of l experts is aggregated the same
way as we aggregate the evaluations for the attribute Gj of an expert.

Step 6. Each alternative has its own assessment in the form of an interval
number. They are ranked by Equation1–4. Decision will be made in last based on
their sorting.

4. APPLICATION

In this section, the interval number power average operation is applied to
MADM with uncertain information presented by interval numbers, the practical
example used in Wang and Lee39 (after proper management in Ref. 31) is adopted
to illustrate the efficiency of our proposed operator. A comparison between the
proposed operator and the IFPWA operator31 is given.

Let us consider a situation where there are four software alternatives xi (i
= 1,2,3,4) in the candidate list for us to choose from in order to improve work
productivity. Four attributes Gj (j = 1,2,3,4) are evaluated by three experts ek (k =
1,2,3) who act as the decision makers and their weight vector is λ = (0.4, 0.3, 0.3)T .
Besides, the considered four attributes are as follows:
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� G1: cost saving;
� G2: contribution to organization performance;
� G3: effort to transform from current system;
� G4: outsourcing software developer reliability.

The weighted vector of them is θ = (0.30, 0.25, 0.25, 0.20)T .

Step 1. Three interval number decision matrices ek = (a(k)
ij )4×4 are given as

Equation 25–27.

e1 =

x1 x2 x3 x4

G1

G2

G3

G4

⎡
⎢⎣

(0.4, 0.5) (0.5, 0.6) (0.2, 0.2) (0.3, 0.5)
(0.5, 0.5) (0.6, 0.6) (0.7, 0.7) (0.6, 0.8)
(0.7, 0.7) (0.2, 0.5) (0.4, 0.4) (0.5, 0.9)
(0.3, 0.4) (0.5, 0.7) (0.5, 0.8) (0.8, 0.9)

⎤
⎥⎦ (25)

e2 =

x1 x2 x3 x4

G1

G2

G3

G4

⎡
⎢⎣

(0.3, 0.4) (0.4, 0.7) (0.1, 0.1) (0.2, 0.4)
(0.3, 0.5) (0.5, 0.7) (0.5, 0.8) (0.7, 0.7)
(0.5, 0.8) (0.2, 0.4) (0.4, 0.6) (0.4, 0.8)
(0.4, 0.5) (0.6, 0.6) (0.4, 0.4) (0.7, 0.9)

⎤
⎥⎦ (26)

e3 =

x1 x2 x3 x4

G1

G2

G3

G4

⎡
⎢⎣

(0.5, 0.6) (0.6, 0.6) (0.3, 0.3) (0.2, 0.3)
(0.5, 0.6) (0.7, 0.7) (0.6, 0.6) (0.5, 0.7)
(0.6, 0.8) (0.3, 0.5) (0.3, 0.5) (0.9, 0.9)
(0.3, 0.5) (0.5, 0.5) (0.6, 0.8) (0.6, 0.6)

⎤
⎥⎦ (27)

Step 2. The interval numbers are multiplied by the weights at first. The results
are shown in Tables I–III:

Then, the interval numbers are mapped to the unit interval. Since the interval
numbers are already parts of the unit interval, {Ã11, Ã12, ..., Ãij , ..., Ã44} are still
the original ones after mapping.

Table I. Weighted evaluation of expert 1.

x1 x2 x3 x4

θ1 ∗ G1 (0.120, 0.150) (0.150, 0.180) (0.060, 0.060) (0.090, 0.150)
θ2 ∗ G2 (0.125, 0.125) (0.150, 0.150) (0.175, 0.175) (0.150, 0.200)
θ3 ∗ G3 (0.175, 0.175) (0.050, 0.125) (0.100, 0.100) (0.125, 0.225)
θ4 ∗ G4 (0.060, 0.080) (0.100, 0.140) (0.100, 0.160) (0.160, 0.180)

Table II. Weighted evaluation of expert 2.

x1 x2 x3 x4

θ1 ∗ G1 (0.090, 0.120) (0.120, 0.210) (0.030, 0.030) (0.060, 0.120)
θ2 ∗ G2 (0.075, 0.125) (0.125, 0.175) (0.125, 0.200) (0.175, 0.175)
θ3 ∗ G3 (0.125, 0.200) (0.050, 0.100) (0.100, 0.150) (0.100, 0.200)
θ4 ∗ G4 (0.080, 0.100) (0.120, 0.120) (0.080, 0.080) (0.140, 0.180)
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Table III. Weighted evaluation of expert 3.

x1 x2 x3 x4

θ1 ∗ G1 (0.150, 0.180) (0.180, 0.180) (0.090, 0.090) (0.060, 0.090)
θ2 ∗ G2 (0.125, 0.150) (0.175, 0.175) (0.150, 0.150) (0.125, 0.175)
θ3 ∗ G3 (0.150, 0.200) (0.075, 0.125) (0.075, 0.125) (0.225, 0.225)
θ4 ∗ G4 (0.060, 0.100) (0.100, 0.100) (0.120, 0.160) (0.120, 0.120)

e1 is taken as the example to show the aggregation process. Four distance
measure matrixes D1 − D4 are constructed as follows:

D1 =

⎡
⎢⎣

0.0000 0.0132 0.0409 0.0658
0.0132 0.0000 0.0500 0.0553
0.0409 0.0500 0.0000 0.1052
0.0658 0.0553 0.1052 0.0000

⎤
⎥⎦ (28)

D2 =

⎡
⎢⎣

0.0000 0.0173 0.0809 0.0473
0.0173 0.0000 0.0661 0.0321
0.0809 0.0661 0.0000 0.0407
0.0473 0.0321 0.0407 0.0000

⎤
⎥⎦ (29)

D3 =

⎡
⎢⎣

0.0000 0.1150 0.0400 0.0721
0.1150 0.0000 0.0750 0.0482
0.0400 0.0750 0.0000 0.0346
0.0721 0.0482 0.0346 0.0000

⎤
⎥⎦ (30)

D4 =

⎡
⎢⎣

0.0000 0.0594 0.0645 0.0532
0.0594 0.0000 0.0323 0.0163
0.0645 0.0323 0.0000 0.0299
0.0532 0.0163 0.0299 0.0000

⎤
⎥⎦ (31)

Step 3. Equations 19–21 is used to get the SMMi (i = 1, 2, 3, 4) for each
alternatives. The results of e1 are shown as SMM1 − SMM4:

SMM1 =

⎡
⎢⎣

1.0000 0.9868 0.9591 0.9342
0.9868 1.0000 0.9500 0.9447
0.9591 0.9500 1.0000 0.8948
0.9342 0.9447 0.9895 1.0000

⎤
⎥⎦ (32)

SMM2 =

⎡
⎢⎣

1.0000 0.9827 0.9191 0.9527
0.9827 1.0000 0.9339 0.9679
0.9191 0.9339 1.0000 0.9593
0.9527 0.9679 0.9593 1.0000

⎤
⎥⎦ (33)

SMM3 =

⎡
⎢⎣

1.0000 0.8850 0.9600 0.9279
0.8850 1.0000 0.9250 0.9518
0.9600 0.9250 1.0000 0.9654
0.9279 0.9518 0.9654 1.0000

⎤
⎥⎦ (34)

International Journal of Intelligent Systems DOI 10.1002/int



NEW INTERVAL NUMBERS POWER AVERAGE OPERATOR IN MADM 641

SMM4 =

⎡
⎢⎣

1.0000 0.9406 0.9355 0.9468
0.9406 1.0000 0.9677 0.9837
0.9355 0.9677 1.0000 0.9701
0.9468 0.9837 0.9701 1.0000

⎤
⎥⎦ (35)

The process of the evaluations of SMMi (i = 1, 2, 3, 4) for e2 − e4 is the same
as e1.

Step 4. Add all the elements of four rows in Equation 32–35, the vote function
Vij of Aij in e1 can be obtained as follows:

V11 = 1.0000 + 0.9868 + 0.9591 + 0.9342 = 3.8801

V12 = 0.9868 + 1.0000 + 0.9500 + 0.9447 = 3.8815

V13 = 0.9591 + 0.9500 + 1.0000 + 0.8948 = 3.8039

V13 = 0.9342 + 0.9447 + 0.9895 + 1.0000 = 3.8684

and

V21 = 3.8545, V22 = 3.8845, V23 = 3.8123, V24 = 3.8799

V31 = 3.7729, V32 = 3.7618, V33 = 3.8504, V34 = 3.8451

V41 = 3.8229, V42 = 3.8920, V43 = 3.8733, V44 = 3.9006

Then, the weight of Aij in e1 can be obtained as follows:

ω11 = 3.8801

3.8801 + 3.8815 + 3.8039 + 3.8684
= 0.2514

ω12 = 3.8815

3.8801 + 3.8815 + 3.8039 + 3.8684
= 0.2515

ω12 = 3.8039

3.8801 + 3.8815 + 3.8039 + 3.8684
= 0.2465

ω14 = 3.8684

3.8801 + 3.8815 + 3.8039 + 3.8684
= 0.2506

and

ω21 = 0.2498, ω22 = 0.2517, ω23 = 0.2471, ω24 = 0.2514

ω31 = 0.2477, ω32 = 0.2470, ω33 = 0.2528, ω34 = 0.2525

ω41 = 0.2468, ω42 = 0.2513, ω43 = 0.2501, ω44 = 0.2518

The evaluations of e2 − e4 are the same as e1.
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Step 5. Since each alternative has its own scores from three experts, the next
step is fusing them with the consideration of weights of the experts. The results are
shown as follows (Table IV).

Here, Equations 19–24 are used as well after they are multiplied by the weights.
The final evaluations are presented in Table V.

Step 6. Finally, Equations 1–4 are used to order the four ultimately evaluations.
We have

P =

⎡
⎢⎣

0.5000 0.4069 0.7824 0.1811
0.5931 0.5000 0.8681 0.2706
0.2176 0.1319 0.5000 0.0000
0.8189 0.7294 1.0000 0.5000

⎤
⎥⎦

and

p1 = 0.5000 + 0.4069 + 0.7824 + 0.1811 = 1.8704

p2 = 0.5931 + 0.5000 + 0.8681 + 0.2706 = 2.2318

p3 = 0.2176 + 0.1319 + 0.5000 + 0.0000 = 0.8495

p4 = 0.8189 + 0.7294 + 1.0000 + 0.5000 = 3.0483

p4 	 p2 	 p1 	 p3, thus we have x4 	 x2 	 x1 	 x3, which means that
the rank order is (alternative x4) 	 (alternative x2) 	 (alternative x1) 	
(alternative x3) and the forth is the best choice. It is coincided with the results of
that presented in Ref. 31.

It can be easily seen that the algorithm proposed before is simpler and more
convenient than the IFPWA operator31 and they are equally effective as shown in
the practical MADM problem. In addition, its application will not be limited to the
MADM and we can use that to deal with many issues presented by interval numbers
in an efficient manner.

Table IV. The assessment of three experts.

x1 x2 x3 x4

P − A1 (0.1201, 0.1327) (0.1127, 0.1488) (0.1086, 0.1238) (0.1315, 0.1889)
P − A2 (0.0923, 0.1358) (0.1040, 0.1513) (0.0839, 0.1151) (0.1191, 0.1690)
P − A3 (0.1216, 0.1578) (0.1326, 0.1450) (0.1087, 0.1313) (0.1320, 0.1522)

Table V. The final assessment for the alternatives.

x1 x2 x3 x4

λ1 ∗ P − A1 (0.0480, 0.0531) (0.0451, 0.0595) (0.0434, 0.0495) (0.0526, 0.0756)
λ2 ∗ P − A2 (0.0277, 0.0407) (0.0312, 0.0454) (0.0252, 0.0345) (0.0357, 0.0507)
λ3 ∗ P − A3 (0.0365, 0.0473) (0.0398, 0.0435) (0.0326, 0.0394) (0.0396, 0.0457)
P − A (0.0374, 0.0470) (0.0387, 0.0495) (0.0337, 0.0411) (0.0426, 0.0573)
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5. CONCLUSION

In this paper, a new method to fuse uncertain values denoted by interval numbers
is proposed based on the power average operator presented by Yager.6 It is shown that
the new method can deal with interval numbers aggregation in MADM problems in
an efficient manner. We take a practical example to illustrate the use of the proposed
method. It can be easily applied to other aggregation problem for its advantages
such as simpleness of algorithm and flexibility of the support function. In the future,
different support functions will be structured to apply this operator to different
occasions or fields.
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