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Classification of Electrocardiogram (ECG) data has been an important research topic in the machine learn-
ing area for many years. Recently, deep learning methods have been used in classifying ECG data and
have achieved superior results than traditional methods. However, in real-world applications, two chal-
lenges existing deep learning methods cannot handle well – imbalanced data and model interpretability.
In this paper, we propose an ECG classification method named Knowledge-Shot Learning (KSL) that can
handle with the above two challenges. KSL constructs a novel neural network architecture that can be
effectively trained on imbalanced ECG data. Besides, KSL can also extract interpretable feature vectors
and give support cases as result explanations. Moreover, KSL can even classify unseen diseases if pro-
vided with the necessary medical knowledge. Experiments on real-world ECG data show that KSL

improves 10.00% of F1-score on imbalanced classes, and 43.75% of F1-score on unseen classes, compared
with the second-best baseline. KSL also provides interpretable results that are consistent with medical
domain knowledge.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Heart disease is the leading cause of death in the world. For
example, ventricular fibrillation, one of the most likely mecha-
nisms for sudden death, is leading the cause of fatality among
patients with coronary heart disease [1]. Accurately and timely
treatment is crucial – the survival rate of patients receiving rapid
defibrillation is 15.3% higher than the defibrillation time by
2 min or more [2].

With the popularity of wearable devices, it is now much more
convenient to collect patients’ ECG data, which records physiolog-
ical activities of the heart over a while. Thus, the abundant heart-
related health information provides an opportunity for machine
learning based automated ECG diagnosis tools to provide a more
accurate diagnosis for patients to get medical treatment for inspec-
tion or first aid. We classify these existing methods as three cate-
gories, namely, feature engineering methods [3–7], deep learning
methods [8–22] and combined methods [23–26]. Deep learning
methods have surpassed the traditional feature extraction method
in ECG diagnosis, due to its ability to automatically extract effec-
tive features and classification using Convolution Neural Network
(CNN) [10,11,23,18], Recurrent Neural Network (RNN) [12–15] or
CNN + RNN [22,16,17]. Moreover, combined methods further
improve the performance by combining the handcrafted domain
feature with deep learning methods (more details see Section 2).

However, despite the progress the aforementioned methods
have made, there are still several challenges that they ignore or
can not handle well as follows:

� Imbalanced Data: In the real world, most people are healthy;
some people have some common heart diseases, only a small
fraction of people have rare diseases. This situation leads to a
serious imbalance problem in almost all collected ECG data.
However, most ECG classification methods are easily biased to
the number of categories with a large number of samples,
resulting in poor performance of category classifications with
fewer samples. This problem makes it harder for deep learning
methods to achieve good performance on these rare diseases.
However, it is much more important to classify rare diseases
correctly. For example, ventricular escape happens rarely, but
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it is hazardous that it may lead to death in a few minutes, com-
monly due to heart attack or medication side effect [27]. For
imbalance problems, resampling is usually used to solve this
problem, but if the sample size is too small, the category will
be overfitted and the features of the category will still not be
learned.

� Classifying Unseen Categories: As an extreme case of imbal-
anced data, we consider how to classifying classes that have
never happened in existing training data, which is also likely
to happen in a real-world application. However, most existing
deep learning methods were designed to learn from ECG data,
but not ECG medical domain knowledge. It is hard to equip
them with medical domain knowledge for classifying unseen
categories. For the classification of invisible categories, the gen-
eral strategy is to correspond the extracted part of model fea-
tures to the knowledge domain that humans can understand,
and then artificially give the features of the invisible categories.
However, doing so will cause the classifier to only use artifi-
cially given features to classify, which will cause the classifica-
tion performance of other visible categories to decrease.

� Model Interpretability: Aside from classification results, inter-
pretable explanations that can support the results are even
more important for cardiologists to make a clinical decision
carefully. Classification results solely without any medical evi-
dence support are absolutely not acceptable for patients
[28,29]. However, most existing deep learning methods are
too sophisticated to be understood directly by a human. In fact,
they are often regarded as black-box models without necessary
interpretability. These methods can only tell ‘‘what is it” but not
‘‘why is it”. Most interpretable methods are simpler and limited
in performance. Therefore, it is difficult to build an interpretable
high-performance model.

To solve the above problems in deep learning methods for ECG
classification. In this paper, we propose an interpretable deep
model named KSL to classifying imbalanced ECG data. In detail,
KSL first builds a knowledge explainer neural network to extract
knowledge vectors, which are feature vectors that in accord with
engineered features and golden rules from medical domain knowl-
edge. Then, KSL build knowledge evaluator neural network to mea-
sure the pairwise similarity between knowledge vectors. The
ground-truth of pairwise similarity would be close to 1 if paired
knowledge vectors (also the paired ECG data) are more likely from
the same class; otherwise it would close to 0. Finally, when classi-
fying a new ECG data, one can pick some candidate ECG data from
the whole dataset, compute the similarity scores between the new
ECG data and them via KSL, then vote to get the final results.
Meanwhile, one can also use the candidate ECG data as inter-
pretable medical evidential supports. Intuitively, we named our
method ‘‘Knowledge Shot” because we classify a new labeled
ECG data based on explained knowledge vector instead of ECG data
directly (Knowledge), and we also use a pairwise similarity com-
parison instead of probabilities (Shot).

Our contributions are listed as follows:

� We propose a novel deep learning method KSL that can be
effectively trained on imbalanced ECG data. As an extreme case
of imbalanced data, KSL can even classify unseen diseases if
provided with necessary medical knowledge.

� KSL provides easily understandable interpretable knowledge
vector and evidential supports along with classification results.
Thus it can be better used in the medical area.

� Experiments on real-world ECG data show that KSL improves
10.00% of F1-score on imbalanced classes, and 43.75% of
F1-score on unseen classes, compared with the second-best
baseline.
2. Related work

Existing ECG classification methods can be divided into three
categories: feature engineering methods, deep learning methods,
and combine methods. The three types of methods are introduced
below. At the end of the section, we compare the similarities and
differences between KSL and metric learning.

2.1. Feature engineering methods

In the past decades, with the help of computing technology,
many algorithms have been proposed to classify ECG automati-
cally. Most of these works rely on designing effective features
based on medical domain knowledge and then utilize traditional
machine learning methods to classification.

These effective features based on medical domain knowledge
are easy to be understood by a human, such as whether P waves
disappear or the QRS duration. For example, H Pürerfellner et al.
[3] use the feature of whether P waves are detected to improve
the performance of AF detection successfully. Carrara et al. [4]
use linear and dynamic measurements of RR interval time series
to extract feature and classify by logistic regression, k-Nearest
Neighbors, and random forests. Many of these methods have been
thoroughly investigated in previous literature [5,3,4,6,7]. While
such traditional methods are interpretable, the process of present-
ing effective features is exhaustive, but these methods are limited
in performance, and there is no way to detect ECG data for cate-
gories that have not been seen.

2.2. Deep learning methods

Recently, the deep learning method has surpassed the tradi-
tional feature extraction method in ECG classification, due to its
ability to extract effective features and classification automatically
[9]. These method using Convolution Neural Network (CNN)
[10,11,23,18], Recurrent Neural Network (RNN) [12–15] or CNN
+ RNN [22,16,17]. For example, Xiong et al.[10], proposed a method
for ECG classification using repeated 16 1-D convolutions with skip
connections. Hannun et al. [11], proposed a method for ECG classi-
fication using 16 residual blocks with two convolutional layers per
block. The convolutional layers have a filter width of 16 and 32*2m
filters, wherem is a hyper-parameter which starts at 0 and is incre-
mented by 1 every fourth residual block. Schwab et al. [13] use
RNNs with 1–5 recurrent layers that consist of either Gated Recur-
rent Units (GRU) or Bidirectional Long Short-Term Memory
(BLSTM) units for ECG classification.

However, most deep learning methods equally treat every
training samples, so that they can not be effectively trained on
imbalanced ECG data, and there is no way to deal with this cate-
gory without training samples. Besides, they are too sophisticated
to be understood that is not applicable in medical situations.

2.3. Combined methods

In order to achieve higher performance, some research attempts
to combine feature engineering methods and deep learning meth-
ods for ECG classification. Hong et al. [23,24] first explore expert
features from the statistical area, signal processing area, and the
medical area. Then, they build a deep learning neural network to
extract features automatically. Finally, they combined these fea-
tures and put them into ensemble classifiers. Shashikumar et al.
[25] apply continuous wavelet transform to PPG data and train
convolutional neural networks (CNN) on the derived spectrogram
to detect AF. The combination of CNN output and features based
on beat-to-beat variability and signal quality calculations provides



Table 1
Notations.

Notation Definition

x 2 Rt ECG data in t dimension
y 2 f1; . . . ; kg Label with k classes

a 2 Rd Knowledge vector in d dimension

d 2 Rl Difference vector in l dimension

F h Feature extractor with parameter h
S/ Pairwise similarity calculator with parameter /
Du Pairwise difference calculator with parameter u
H Knowledge Explainer
G Knowledge Evaluator

Dxy ¼ fðxðiÞ; yðiÞÞgni¼1
Data set with ECG data and labels

Dxa ¼ fðxðiÞ;aðiÞÞgni¼1
Data set with ECG data and knowledge vector

Day ¼ fðaðiÞ; yðiÞÞgni¼1
Data set with knowledge vector and labels
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significant accuracy improvements. Golrizkhatami et al. [26] pro-
posed system utilizes a novel decision-level fusion of features for
ECG classification by three different approaches: using the wavelet
transform based morphological features representing localized sig-
nal behavior, statistical features exhibiting overall variational char-
acteristics of the signal, and temporal features representing the
signal’s behavior on the time axis extracted by deep neuro-
network.

Although combined methods have shown better performance
than individual methods, effective training is still not possible on
imbalanced ECG data. Besides, the combined method cannot han-
dle the case where there is no training sample for this category.
Moreover, combined methods are also more complicated, so most
of them are difficult to interpret.
2.4. Difference with metric learning

In the field of person re-identification, there are similar studies,
metric learning, that extract features from input images and then
calculate the similarity to solve the problem of the replacement
of training samples in some categories [30–32], but the research
in KSL and the field of person re-identification has the following
differences: (1) There are fewer categories of heart disease than
person re-identification, so there is no problem with the network
being too large. Therefore, KSL design is to input the samples of
each class into the neural network at the same time and select
the most similar sample class as the output instead of just input-
ting two samples to determine whether they are the same class;
(2) Since KSL can convert ECG to the knowledge vector corre-
sponding to the golden role in medicine, KSL can artificially give
the knowledge vector through the medical golden rule to deter-
mine the heart disease without ECG data. This enables KSL to clas-
sify unseen classes.
3. Our method

In this section, we introduce our method in detail. We first for-
mulate the ECG classification problem and give the framework our
KSL in Section 3.1. Then, we introduce two main components in
KSL, namely, the knowledge explainer in Section 3.2 and the
knowledge evaluator in Section 3.3. Finally, we show how to train
KSL in Section 3.4.
3.1. Formulation

Formally, we use X , fxð1Þ . . .xðnÞg 2 Rn�t denotes ECG data with
n samples, each sample xðiÞ 2 Rt has t data points and
Y , fyð1Þ . . . yðnÞg denote classification labels, each label
yðiÞ 2 f1 . . . kg. So there are c diseases in these n ECG data, and
use xc to denotes an ECG data in c class.

Besides, we also denote A , fað1Þ . . . aðnÞg 2 Rn�d denotes n

extracted knowledge vectors, each knowledge vector aðiÞ 2 Rd has
d attributes, and similarly ac is used to denotes a knowledge vector
in c class. Moreover, we use H and G denote knowledge explainer
and knowledge evaluator introduced in Section 3.2 and Section 3.3
respectively. Notations is summarized in Table 1.

We cast the ECG diagnosis task into a multi-class prediction
problem. To predict the unknown ECGs, KSL first build knowl-
edge explainer neural network H to extract knowledge vectors
a from ECGs. Then, KSL build knowledge evaluator neural
network G to compute the pairwise similarity between the
knowledge vectors a. The overall framework of KSL is shown
in Fig. 1.
3.2. Knowledge explainer

When doctors diagnose ECGs, they first observe the features of
these ECGs (e.g. P wave amplitude, PR interval, etc.), and then use
these features to classify ECGs. The function of knowledge explai-
ner is similar to the observation of ECGs when doctors classify
ECGs. Knowledge explainer extracts features from ECGs and treats
these features as attributes of ECGs. We combine all attributes into
a knowledge vector a.

The way our method extracts knowledge vector from an ECG is
using neural network to extract meaningful ECG features (e.g. P
wave amplitude, PR interval, etc.) corresponding to medical
domain knowledge as Eq. 1

F h : R
t ! Rd ð1Þ

The the knowledge vector a ¼ F hðxÞ which contains numeric
values that describe those features of ECG data.

We first randomly initialize the parameters of feature extractor
h, and then optimize it by gradient descent as follows,

h ¼: h� arLDxaðhÞ ð2Þ
LDxa ðhÞ ¼
1

j Dxa j
X

ðx;aÞ2Dxa

lðFhðxÞ;aÞ ð3Þ

where l is the empirical loss, which can be chosen as mean square
error loss and a the learning rate.

For ECG of rare heart diseases, medical knowledge can be used
to assist diagnose. However, in the general computer-aided ECG
diagnosis methods, there is no way to judge the electrocardiogram
of a rare heart disease that has not been seen. For the unseen class
of heart disease, we use medical knowledge to obtain knowledge
vector by medical domain experts. For example, whether ECG has
wide and large QRS waves, irregular RR intervals, or P-waves miss-
ing, etc. These meaningful ECG patterns describe the characteris-
tics of ECG data, such as morphological features, statistical
features.

To map the knowledge vectors extracted from medical knowl-
edge and the knowledge vectors extracted from neural networks,
the features of the knowledge vectors we use are the intersection
of features extracted from deep learning and medical knowledge.
Therefore, we build the knowledge explainer to obtain heart dis-
ease features with and without ECG data.

With the knowledge explainer, we can get a knowledge vector
for each class. Given an data set Day ¼ fðaðiÞ; yðiÞÞgni¼1 with knowl-
edge vector aðiÞ 2 Rr and ECG label yðiÞ 2 f1; . . . ; kg. The output of
the knowledge explainer, the knowledge vector, is mapped to med-
ical knowledge, which enables the unseen categories to be given



Fig. 1. The framework of KSL.
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artificially in the middle layer of the model, enables the model to
classify unseen categories, and makes the model interpretable.
3.3. Knowledge evaluator

Most of the existing neural network-based ECG classification
methods treated each sample equally when training the model.
In this case, the model is biased by rare classes and dominated
by majority classes; then, rare classes would be more easily
wrongly classified when the number of each category of the data
set is imbalanced; the model would tend to weigh more on major-
ity classes. For example, when there are 9997 samples of normal
category, 2 samples of ventricular escape beat and 1 sample of
atrial escape beat, most models learn to treat all samples as nor-
mal, which have a very high accuracy of 0.9997, but this model
cannot detect ventricular escape beat and atrial escape beat.

In general, resampling strategies are often used to alleviate data
imbalances. But, when the sample size of rare disease is too small,
the model can not learn the characteristics of the disease. Besides,
the knowledge vector corresponds to medical knowledge, which
limits the model’s ability to learn other features, which may lead
to reduced performance, and the imbalance problem has not been
solved.

To solve this problem, the classification method of our knowl-
edge evaluator is to use the knowledge vector obtained by the
knowledge explainer to calculate the similarity between the sam-
ples to be classified and the samples of each category and then
select the most similar category instead of direct classification. In
this way, our optimization goal is to distinguish whether two sam-
ples are similar. When encountering a sample of a rare category,
the sample of a rare category can be classified correctly by judging
the similarity, although it may not have learned the characteristics
of the category. This prevents the model from being dominated by
the majority class and allows classes with very few samples to be
identified. It also enables the knowledge evaluator to obtain better
performance in the case of using only knowledge vector classifica-
tion that can correspond to medical knowledge.

We introduce the knowledge evaluator into two steps. First, we
modify the target ofDu to measure the difference of the paired ECG
data, and then use S/ to calculate pairwise similarity to determine
the ECG category instead of directly calculating the probability.

The first step Du of the knowledge evaluator is used to compute
difference vector between knowledge vectors ai and aj using Eq. 4:

d̂ðijÞ ¼ DuðaðiÞ; aðjÞÞ ð4Þ
For Du, we parameterized it as a neural network shared weights

among paired ECG data. The neural network simultaneously
receives 2 knowledge vector corresponds to pairwise ECG data.
Then, it transforms the pair of input into a representation space
of distance.

For the ECG classification problem with k diseases, we use dðiÞ
c to

represent the difference vector between the unknown knowledge
vector aðiÞ and the random sample of knowledge vector ac for
class c.

d̂i
c ¼ DuðaðiÞ;acÞ ð5Þ
The second step S/ of the knowledge interpreter is used to mea-

sure similarity between each class. We use sðiÞc to indicate whether
the aðiÞ and the random knowledge vector ac in class c are the same

class in Eq. 6. The pairwise similarity ground-truth sðiÞc would be 1 if
aðiÞ and ac are in the same class, otherwise would be 0.

sðiÞc ¼ 0 ; yðiÞ – c

1 ; yðiÞ ¼ c

(
ð6Þ

Formally, the objective of the similarity scores with each class
samples is computed using Eq. 7

ŝðiÞ0 ; . . . ; ŝðiÞk ¼ S/ðd̂ðiÞ
0 ; . . . ; d̂ðiÞ

k Þ ð7Þ
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We use S/ to calculate the similarity between the ECG to be
classified and the ECG of each category. To compute / and u, we
first randomly initialize the parameters of feature extractor /
and u, and then optimize it by gradient descent as follows,

/;u½ � ¼: /;u½ � � brLDay ð /;u½ �Þ ð8Þ

LDayð /;u½ �Þ ¼ 1
j Day j

X
ða;yÞ2Day

lðargmaxðS/ðDuða;a0Þ; . . . ;Duða;akÞÞÞ;yÞ

ð9Þ
where l denotes the empirical loss which can be chosed as cross-
entropy loss and b the learning rate.

The input of S/ is the difference vector of each class, and the
output is the similarity of each class, instead of metric learning,
just input the difference vector of one class and output the similar-
ity of one class. This enables S/ to consider the difference between
the input of unknown categories and the input of each category to
give the overall similarity result, thereby improving overall perfor-
mance. Since the inputs of S/ are diff vectors of all categories, the
calculation of S/ is the calculation of the same deep learning archi-
tecture * # of class.

3.4. Training KSL

For training KSL, we propose to use a dual loop training process,
as shown in Fig. 2. The detailed learning algorithm can be seen in
Algorithm 1. We divide the KSL training algorithm into three loops.
In the first loop, we use data set Dxa, including knowledge vectors
and labels, to optimize feature extractor F h by Eqs. 3 and 2, so that
ECG can be converted to knowledge vector well. In the second loop,
we use data set Day, including knowledge vectors data and labels,
to optimize S/ and Du in knowledge evaluator by Eqs. 9 and 8,
so that knowledge vector can be classified well. In the third loop,
we use dataset Dxy, including ECG data and labels, to optimize
F h;S/ and Du , so that KSL can optimize classification more
directly. To compute h;/ andu, we optimize them by gradient des-
cent as follows,

h;/;u½ � ¼: h;/;u½ � � crLDxyð h;/;u½ �Þ ð10Þ

LDxy ð h;/;u½ �Þ¼ 1
j Dxy j

X
ðx;yÞ2Dxy

lðargmaxðS/ðDuðF hðxÞ;F hðx0ÞÞ; . . . ;DuðF hðxÞ;F hðxkÞÞÞÞ;yÞ

ð11Þ

where l denotes the following empirical loss, e.g. cross-entropy loss
and c denotes the learning rate.

Dividing the network into two parts (knowledge explainer and
knowledge evaluator) for training can add some categories that are
not in the training data through the knowledge vector in the mid-
dle of the medical knowledge, so that the model can separate the
categories that do not appear in the training data set. In addition,
the training goal of the knowledge explainer is to obtain a knowl-
edge vector that can correspond to medical knowledge, so dividing
the network into two parts can increase interpretability. However,
Fig. 2. Dual loop training strategy in KSL.
the method of dividing the network into two parts and training
separately has no way to optimize the entire model with the final
classification result, which may cause poor classification results.
Therefore, during training, an outer loop is added, which can opti-
mize the final classification result of the entire network and
improve the overall performance, but it cause the calculation
amount of the model to be doubled during the training.
Algorithm 1: Training KSL
Input
Dxy ¼ fðxðiÞ; yðiÞÞgni¼1
Dxa ¼ fðxðiÞ; aðiÞÞgni¼1
Day ¼ fðaðiÞ; yðiÞÞgni¼1

Output

Feature extractor F h with parameter h

Pairwise similarity calculator S/ with parameter/

Pairwise difference calculator Du with parameter u
1: Randomly initialize h;/, and u

2: for each epoch

3: # Inner Loop

4: for samples in Dxa
5: Evaluate LDxa ðhÞ by Eq. 3

6: Optimize h by Eq. 2

7: end for

8: for samples in Day
9: Evaluate LDay ð /;u½ �Þ by Eq. 9

10: Optimize /;u½ � by Eq. 8

11: end for

12: # Outer Loop

13: for samples in Dxy
14: Evaluate LDxy ð h;/;u½ �Þ by Eq. 11

15: Optimize h;/;u½ � by Eq. 10

16: end for

17: end for
4. Interpretable results from KSL

Interpretable results aim to provide necessary explanations
about given results that can help a human understand ‘‘why is it”
beyond ‘‘what is it”. In the medical field, the method of
computer-aided diagnosis requires a high degree of interpretability
so that doctors and patients have a high degree of trust in the
method.

The main purpose of interpretability techniques is to reveal the
prediction process of the machine learning model and to explain
the results of the model predictions. We divide the current inter-
pretability research into two categories: (1) directly building an
interpretable model, e.g. [22,17] used the attention mechanism
to explain the relationship between outcome and input ECG. (2)
interpreting black-box model with a simpler proxy model, e.g.
SHAP [33] uses an idea of game theory to measure the role of each
feature in the prediction process, and LIME [34] gives interpretabil-
ity by adding perturbations to input instances and changes in
results. In this paper, we integrate such human understandable
part (knowledge vector) into deep models. Below we discuss the
interpretability of the knowledge interpreter and the knowledge
evaluator separately.

In the knowledge explainer, we can get the knowledge vector in
two ways. The first way is using a feature extractor to convert the
ECG into the knowledge vector, which corresponds to medical
knowledge that can be understood by a human. The second way
is to artificially give knowledge vectors of unseen classes using
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the golden role of medicine. The output of the knowledge explai-
ner, the knowledge vector, has the same meaning as what
human’s knowledge. As the middle layer of the whole model,
knowledge vector can correspond to medical knowledge that
humans can understand. This shows that the classification
method of our model is based on the knowledge vector that peo-
ple can understand to give the classification results. Therefore,
KSL is interpretable.

In the knowledge evaluator, we compare the knowledge vectors
to be classified with the knowledge vectors of each category, and
select the closest category instead of using the knowledge vectors
to classify directly. This makes it easier for people to understand
the process of classification decision-making, so knowledge evalu-
ator is more explanatory than using knowledge vector to classify
directly.

To sum up, we use the knowledge vector corresponding to
human knowledge in the middle of the whole model and use pair-
wise similarity between categories to make the final classification,
so that KSL is interpretable.
5. Experiment

5.1. Experimental settings

DatasetWe use the MIT-BIH Arrhythmia Database [35] which is
a widely used real-world ECG dataset. The dataset consists of 48
records, each containing a 30 min ECG segment selected from a
24-h record of 48 different patients. Each ECG signal is an 11-bit
resolution over a 10 mV range with a sampling frequency of
360 Hz. We extract ECG beats by cutting 1 s around the position
of the QRS complex, which has been marked in the dataset. The
statistics of the dataset is shown in Table 2. Our task is to classify
every ECG beat into one of the 12 classes.

Implementation Details For KSL, we extract following expert
features and compose them to train the knowledge explainer: P
wave existence (1 for existence, 0 for not), P wave amplitude (unit
is mV), QRS complex amplitude (unit is mV), T wave amplitude
(unit is mV), PR interval (unit is second), QRS duration (unit is sec-
ond), QT interval (unit is second), and ST slope (unit is mV/s). We
show the architecture of feature extractor F in Table 3, and the
architecture of the knowledge evaluator shown in Table 4. KSL
was optimized using Stochastic gradient descent (SGD), with the
learning rate set to 0.001. For preprocessing, we use MinmaxScaler
to translate ECG data between 0 and 1, and use StandardScaler to
standardize attributes by removing the mean and scaling to unit
variance. All methods were implemented in pytorch version 1.1.0
and scikit-learn [36], trained on a system equipped with 64 GB
RAM, 12 Intel Core i7-6850 K 3.60 GHz CPUs and Nvidia GeForce
GTX 1060.
Table 2
Data profiles of MIT-BIH dataset.

Label Description #

N Normal sinus beat 74
L Left bundle branch block beat 80
R Right bundle branch block beat 72
V Premature ventricular contraction 71
/ Paced beat 36
A Atrial premature beat 25
F Fusion of ventricular and normal beat 80
f Fusion of paced and normal beat 26
j Junctional escape beat 22
a Aberrated atrial premature beat 15
E Ventricular escape beat 10
e Atrial escape beat 16
Total 10
Measurements We use macro-F1 score to measure classifica-
tion performance. F1-score is the harmonic average of the precision
and recall F1 ¼ ð2� Precision� RecallÞ=ðPrecisionþ RecallÞ, where
Precision is the ratio of predicted positives that are actually posi-
tive samples in the ground truth, and Recall is the ratio of positives
that are correctly classified to actually positive samples. The
macro-F1 score is the average F1 score of each class. We use
macro-F1 score because it is a more comprehensive measurement.
5.2. Comparing with baselines

The compared methods include:

� LR: We use the same knowledge explainer as KSL, but replace
the knowledge evaluator to be a Logistic Regression (LR).

� RF: We use the same knowledge explainer as KSL, but replace
the knowledge evaluator to be a Random Forest (RF) [37]. The
number of trees in RF is set to 20.

� Nearest: We use the same knowledge explainer as KSL, but
replace the knowledge evaluator to be the nearest neighbor
classifier (Nearest), the number of neighbors is set to 8.

� NN: We use the same knowledge explainer as KSL, but replace
the knowledge evaluator to a neural network. We weight more
on rare classes by oversampling them to get more samples.

� CNN: We build the CNN model with three 1-d convolutional
layers based on [38]. Each layer has 64 filters with kernel size
set to 3 and stride set to 2, using ReLU as activation function
and SGD for optimization with oversampling [39].

As shown in Table 2, we take 50 test sets from each category
(less than 50 categories of ‘‘e”, we take 8 as test sets) and the rest
as training sets. For each compared method, we run 10 times and
report the average number (blue bar) as well as the standard devi-
ation (black error bar) as the confidence interval of each method.
The macro-F1 score of all categories is shown in Fig. 3. We can
see that the performance of using neural networks is better than
that of using traditional machine learning methods, and KSL per-
formed better than all baseline in ECG data with imbalanced
categories.

In order to show the effect of extreme imbalance on perfor-
mance, the training samples are sampled from 2, 4, 8, 16 of the
least five categories, and the training samples from other cate-
gories remain unchanged. We only test the macro-F1 scores of
the least five categories in our test set, and the result shows in
Fig. 4. It shows that KSL’s performance in a few sample categories
exceeds all comparison methods. As the amount of data decreases,
the performance difference between KSL and other deep learning
methods becomes larger. This can indicate that KSL is more able
to distinguish a few categories than other methods in the case of
of Samples Proportion # of Test Samples

749 71.23% 50
71 7.69% 50
55 6.92% 50
23 6.79% 50
19 3.45% 50
46 2.43% 50
2 0.76% 50
0 0.25% 50
9 0.22% 50
0 0.14% 50
6 0.10% 50

0.02% 8
4926 100% 558



Table 3
Detailed architecture of the feature extractor F .

Layer Type Kernel size Activation Nonlinearity

0 Input (1,360)
1 Convolution (1,3)
2 Max Pooling (1,2) ReLU Batch Normalization
3 Convolution (1,3)
4 Max Pooling (1,2) ReLU Batch Normalization
5 Convolution (1,3)
6 Max Pooling (1,2) ReLU Batch Normalization
7 Fully Connected 11008 ReLU
8 Fully Connected 500 Sigmoid
9 Fully Connected Number of Attribute

Table 4
Detailed architecture of the knowledge evaluator G.

Layer Type Kernel size Activation

0 Input 8
1 Fully Connected 64 ReLU
2 Fully Connected 128 ReLU
3 Fully Connected 256 ReLU
4 Concatenate 256 * k ReLU
5 Fully Connected 256 * k ReLU
6 Fully Connected 64 * k ReLU
7 Fully Connected k

Fig. 3. Comparison of model performance averaging over all labels. The blue bars
show the average numbers and the black error bars show the standard deviations.

Fig. 4. Comparison of model performance averaging over f, j, a and E. The x-axis
shows different number of training samples used in each method. The solid lines
show the average numbers and the shades show the standard deviations.

Fig. 5. Comparison of model performance for classifying unseen ECG data. The blue
bars show the average numbers averaging over f, j, a, E, and e. The black error bars
show the standard deviations.

Table 5
Error rate of knowledge vector.

Attribute Error rate

P wave existence 0:366� 0:002
P wave amplitude 0:020� 0:001
QRS complex amplitude 0:007� 0:000
T wave amplitude 0:013� 0:000
PR interval 0:130� 0:001
QRS duration 0:019� 0:000
QT interval 0:006� 0:000
ST slope 0:009� 0:000
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imbalanced data. LR is not affected by the sample size, but the
overall accuracy is poor. When the sample size of RF, NN and Near-
est increased from 2 to 16, the macro-F1 scores increased signifi-
cantly. Nearest is the worst performer in extremely unbalanced
data. We believe that when looking for the nearest neighbor, the
way to calculate distance is to directly calculate the L2 distance



Fig. 6. The interpretation results of the knowledge explainer in KSL. We can see that the knowledge explainer gives important expert knowledge without the help of human
experts. Compared with the right ECG, the left ECG has more clear and wider P wave but has less significant QRS complex. This evidence is reflected by higher P wave
existence probability, higher P wave amplitude, and lower QRS complex amplitude, as shown in the table.
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by treating each feature as equally important. Therefore, when the
amount of data in this category is reduced, it is not easy to have
samples that are very similar to the samples to be classified in
the training data set, which lead to poor classification results. In
this experiment, we set number of neighbors in Nearest to 1, 2,
4, 8 separately.
5.3. Classifying unseen ECG data

In this experiment, we show the ability of KSL on classifying
unseen ECG data when providing necessary medical domain
knowledge. Specifically, we hide the ECG data with classes f, j, a,
E, and e when training KSL, provided values of knowledge vector
from golden rules, and then classify these unseen ECG data based
on the approach. The comparison method is LR, NN, RF, Nearest,
which we provide the same necessary medical domain knowledge,
but compare it with test ECG directly without knowledge evalua-
tor. Results are shown in Fig. 5. Although the macro-F1 score of
KSL = 0.428 is not good enough, it is still better than other meth-
ods. LR is not outstanding in overall performance(in Fig. 3), but
its performance is relatively unaffected in the case of extreme
imbalance and unseen classes. NN is affected by data imbalance
(in Table 4), but it still has a certain degree of discrimination in
invisible categories.
5.4. Interpretable results

To show the interpretation results of the knowledge explainer,
we list the error rates of all the attributes used in the experiments
in Table 5. From the table we can see that the error rate of all fea-
tures is very small, and the knowledge vector, as the middle layer
of KSL, can well correspond to medical knowledge.

We randomly select some of ECG data along with their learned
knowledge vector, to visually check whether they are consistent or
not. Results are shown in Fig. 6. We can see that the knowledge
explainer gives important expert knowledge without the help of
human experts. Compared with the right ECG, the left ECG has
more clear and wider P wave but has less significant QRS complex.
This evidence is reflected by higher P wave existence probability,
higher P wave amplitude, and lower QRS complex amplitude, as
shown in the table below.
6. Limitations

KSL has a higher time complexity than traditional neural net-
work. The reason is that KSL needs to calculate the difference
between the sample and each type of electrocardiogram through
the knowledge explainer, and then concatenate all the differences
to become the input of the knowledge evaluator. In detail, we use
cðH0Þ and cðG0Þ represent the same deep learning architecture com-
putation of knowledge explainer and knowledge evaluator, respec-
tively. In the case of k classification, the computation of knowledge
explainer cðHÞ = cðH0Þ � k and the computation knowledge evalu-

ator cðGÞ P cðG0Þ � k2. Besides, KSL can classify unseen classes only
if the knowledge vector of these class is artificially given.
7. Conclusion and future work

In this paper, we propose an interpretable model named KSL to
classify imbalanced ECG data. KSL can be effectively trained on
imbalanced ECG data; it can even classify unseen diseases if pro-
vided necessary medical domain knowledge. Besides, KSL also pro-
vides simple and clear interpretable explanations along with
classification results. These interpretable explanations are easily
understandable for cardiologists, thus can be directly used in the
medical area. Experiments on real-world ECG data show that KSL
improves 10.00% of F1-score on imbalanced classes, and 43.75%
of F1-score on unseen classes, compared with the second-best
baseline.

In the future, we plan to investigate advanced techniques to
reduce the time complexity of KSL. Besides, we will also study
on deep learning methods on ECG for solving other new emerging
interdisciplinary topics such as biometric identification, cardiac
reaction time in safe driving and so on.
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